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Abstract
New types of protein sources will enter our diet in a near future, reinforcing
the need for a straightforward in vitro (cell-based) screening model to test and
predict the safety of these novel proteins, in particular their potential risk for
de novo allergic sensitization. The Adverse Outcome Pathway (AOP) for aller-
gen sensitization describes the current knowledge of key events underlying the
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complex cellular interactions that proceed allergic food sensitization. Currently,
there is no consensus on the in vitro model to study the intestinal translocation
of proteins as well as the epithelial activation, which comprise the firstmolecular
initiation events (ME1-3) and the first key event of theAOP, respectively.Asmem-
bers of INFOGEST, we have highlighted several critical features that should be
considered for any proposed in vitro model to study epithelial protein transport
in the context of allergic sensitization. In addition, we defined which intestinal
cell types are indispensable in a consensus model of the first steps of the AOP,
and which cell types are optional or desired when there is the possibility to cre-
ate a more complex cell model. A model of these first key aspects of the AOP
can be used to study the gut epithelial translocation behavior of known hypo-
and hyperallergens, juxtaposed to the transport behavior of novel proteins as a
first screen for risk management of dietary proteins. Indeed, this disquisition
forms a basis for the development of a future consensus model of the allergic
sensitization cascade, comprising also the other key events (KE2-5).

KEYWORDS
allergen transport, cell culture, food allergy, intestine, novel proteins

1 INTRODUCTION

By 2050, according to the United Nations Department of
Economic and Social Affairs, there are expected to be 9.7
billion people on earth, which means a prospective rise
of 2 billion people over the next 30 years. This relates to
a 60% increase in food demand, as projected by the Food
and Agriculture Organization (Alexandratos & Bruinsma,
2012). To sustain the ecological and societal footprint of
this augmentation in the world’s population, a rapid tran-
sition to a more sustainable food system and circular
economy is crucial. Protein security rather than food secu-
rity is important in this transition as malnutrition is often
caused by a protein deficiency, rather than by a lack of
calories (Aiking & de Boer, 2020).
With the growing consensus that animal protein has

disproportionate environmental impacts (Aiking & de
Boer, 2020), novel proteins from alternative sources (plant-
derived, fungal-derived, or novel proteins from insects,
algae, and seaweeds) are being rapidly introduced into our
European diet. The most important health aspects to con-
sider when introducing novel protein products onto the
European market are acute toxicity, allergenicity, and de
novo allergic sensitization potential, the latter presenting
a critical issue that is often not adequately assessed and
for which no clear guidelines are currently in place due
to the lack of predictive models. Introducing novel pro-
tein sources in our diet, or increasing the intake of already
consumed sources, will inevitably augment the risk of

introducing new food allergies (see also Box 1 for a basic
background on the loss of oral tolerance). For instance,
before the introduction of kiwi fruit to European markets
in 1962, practically no kiwi allergy was seen in Europe,
while currently an estimated 1.8% of the general popula-
tion in Spain is sensitized to kiwi fruit (Mills, 2007). More
recently, there is an increased occurrence in sensitization
and immunoglobulin (Ig)E-cross reactivity toward edible
insects and novel protein products derived thereof (de Gier
& Verhoeckx, 2018). Also, the increased use of concen-
trated pea protein as an alternative to meat protein has
already slightly but significantly increased the incidence
of pea-related allergic reactions, albeit its prevalence is still
considered low (Lavine & Ben-Shoshan, 2019; Taylor et al.,
2021).
In this context, any food that was not consumed “signif-

icantly” in Europe prior to May 1997 is considered to be
a novel food, and thus before a new protein (as an isolate
or food product) can be placed on the market in the Euro-
pean Union, its safety—including allergenicity—must be
evaluated and addressed in a novel food application dossier
for assessment by the European Food Safety Authority
(EFSA), as laid down in theEURegulationNo. 258/97 (Reg-
ulation, 1997). Such a risk evaluation can be approached
from two different angles: (1) risk assessment of the new
protein becoming a primary sensitizer (de novo sensiti-
zation), resulting in a new type of food allergy, and (2)
risk assessment of cross-reactivity toward existing aller-
gens (allergenicity) (Remington et al., 2018). The last angle,
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Box 1

Loss of oral tolerance

The default, “healthy” reaction of the immune system to food proteins is called oral tolerance, which is the con-
tinuous unresponsiveness of the immune system to the 130–190 g of food proteins daily absorbed, a process that is
largely mediated by the gut-associated lymphoid tissue (GALT) (Brandtzaeg, 2009; Yang et al., 2021). GALT is the
largest lymphoid tissue in the body, comprising among others the Peyer’s patches, the lymphoid follicles, and the
mesenteric lymph node (MLN). During oral tolerance rupture, the GALT loses its ability to correctly discriminate
self from external antigens and/or innocuous from dangerous/pathogenic antigens, which can result in allergic
sensitization (Satitsuksanoa et al., 2018). In the GALT, gut-derived antigens are presented by professional antigen-
presenting cells (APC), such as dendritic cells and macrophages, to T- and B-lymphocytes (Randall & Mebius,
2014). The broad antigenic sampling within the GALT facilitates the interaction between antigen-specific B- and
T-lymphocytes leading to the initiation of an appropriate adaptive immune response. In a “healthy” environment,
APCmigrate to the MLN and present the sampled (food) antigen to the lymphocytes, which will be activated and
will differentiate according to three signals: (1) interaction between the major histocompatibility complex class
II (MHCII) of the APC, holding the epitope, and the T-cell receptor, (2) interaction between the CD80/CD86
surface molecules on the APC and the CD28 surface molecule on the T-lymphocytes, and (3) the environmental
cytokines secreted by theAPC and other surrounding cells. A “healthy,” tolerogenic environmentwill promote the
differentiation of naive T-lymphocytes to regulatory T-lymphocytes, which will then activate B-lymphocytes by
surface marker interaction to start the production of antigen-specific tolerogenic antibodies (IgG). T-lymphocytes
will migrate back to the intestinal epithelium to support the immune response. Oral tolerance is thus the default
reaction to the oral exposure to food allergens. This default reaction of oral tolerance is disturbed when allergic
sensitization occurs. One hypothesis, the “dual exposure hypothesis,” postulates that oral tolerance might be lost
due to a primary exposure to food allergens through nonoral routes (cutaneous or airway) (Kulis et al., 2021).
Alternatively, the “epithelial barrier hypothesis” postulates that the “healthy,” tolerogenic environment can be
disturbed by different factors that might affect the integrity and the activation of the (intestinal) epithelial bar-
rier, including microbiota dysbiosis, diet (saturated fatty acid consumption), and the environment (detergents,
microplastics, nanoparticles, etc.), leading to the loss of oral tolerance (Celebi Sozener et al., 2022; Tokuhara et al.,
2019). When oral tolerance is lost, APC will also present the antigen to T-lymphocytes in the MLN, but the naive
T-lymphocytes will differentiate into a pro-inflammatory Th2 phenotype due to the presence of interleukin (IL)-
4, IL-5, and IL-13, which are produced by innate lymphoid cells type 2 (ILC2) cells. When these T-lymphocytes
activate B-lymphocytes, this will lead to the production of antigen-specific immunoglobulin (Ig)E. These IgE have
the capacity to bind to FcεRI receptors onmast cells and basophils and the cross-linking of the IgE-FcεRI complex
by repeated exposure to the antigen will trigger mast cell or basophil activation with subsequent release of sub-
stances that cause the allergic symptoms. The main pathophysiological processes leading to allergic sensitization
are further described in Figure 1.

relative to sensitization, can in principle be tested quite
easily since cross-reactivity is an elicitation event and
thus part of the second stage of the allergic reaction cas-
cade. However, in order to test new protein sources, the
phylogenetic relationship with already known allergenic
protein sources must be known to some extent, other-
wise a targeted risk analysis will be difficult. In vivo, ex
vivo, as well as in vitro immunoglobulin E (IgE) cross-
linking models developed for existing food allergies can
be applied, such as cellular basophil/mast cell mediator
release assays (Bahri et al., 2018; Santos et al., 2021) or
food allergy animal models (Ahrens et al., 2014; Ladics
et al., 2010). Although such elicitationmodels have reliable

predictive value, depending on the allergen source, they
are not always perfect in their translational predictions for
human clinical relevance and severity of symptoms (Eber-
lein, 2020), leaving oral food challenges the gold standard
method of patient diagnosis (Foong et al., 2021). However,
to assess if a novel protein can become a primary sensi-
tizer, the first stage of the allergic reaction cascade needs
to be evaluated, indicated as the sensitization stage, that is,
the moment when a protein (peptide) is recognized by the
immune system as potentially harmful. Limited options
exist to predict de novo sensitization of novel proteins lead-
ing to food allergy and currently no suitable human or
animal models are available that can make an accurate
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prediction or translation (Castan et al., 2020; Remington
et al., 2018). In silico bioinformatics models predict many
potential cross-reactions that are unlikely to have any clin-
ical significance. Murine food allergy models are often
unsuitable or time consuming because rodents, without
the use of an inflammatory adjuvant, are generally not sus-
ceptible to sensitization (Bøgh et al., 2016; Castan et al.,
2020), unless the exposure time is prolonged for up to 4–
6 weeks (Smit et al., 2015). While the applicability of in
vitro epithelial models in food allergy models has been
recognized (Cubells-Baeza et al., 2015), their translational
capacity to de novo food allergen sensitization has not
been validated. Hence, considering the strongly growing
societal demand to avoid the use of animal experimenta-
tion, there is a need for the development of in vitro-based
screening models that have the capacity to distinguish
between nonallergic and allergic proteins and can address
the question of whether proteins from novel sources can
lead to the development of novel food allergies. Within the
COST Action ImpARAS (FA1402), an Adverse Outcome
Pathway (AOP) for allergic sensitization has been pro-
posed (Lozano-Ojalvo et al., 2019; Van Bilsen et al., 2017),
describing the major molecular initiation events (MIE)
and key events (KE) (Figure 1) underlying the de novo
food sensitization response cascade. In this AOP, food pro-
tein uptake over the small intestinal mucosal barrier (via
MIE1 to 3) and epithelial activation (KE1) are the prereq-
uisite steps for the subsequent KE (KE2-5) and for allergic
sensitization to occur (Figure 1).

2 FOCUS OF THIS REVIEW

EFSA underlines the need for the integration and
comparability between in vitro experiments to better
understand the cellular and molecular mechanisms
of sensitization (Mullins et al., 2022). Several in vitro
intestinal epithelial barrier models employed in pro-
tein/allergen transport and absorption studies have
been described, largely based on single-cell lines
(Cubells-Baeza et al., 2015; Gavrovic-Jankulovic &
Willemsen, 2015; Lozano-Ojalvo et al., 2019). However,
these rather “simple” models are unable to accurately
reflect the complexity of food allergen transport. There is
a lack of agreement on a consensus model to investigate
the first critical steps of the AOP (MIE1-3 and KE), and
it is important to adopt a common scientific position on
this, given their critical role in the allergic sensitization
cascade. In this review, we aim at providing a critical
assessment of what an in vitro gut mucosal model should
ideally encompass, in order to study the potential effect
of novel proteins on the AOP events MIE1-3 and KE1 (see
Figure 1). To do this, this review will comprehensively

describe key gastrointestinal physiology features, detail
intestinal cell types (focused on the small intestine)
that play a role in the epithelial transport of known
allergens (MIE1-3), and review the epithelial biomark-
ers that are secreted following epithelial activation, as
well as the factors that influence this secretion (KE1).
This review will not detail KE2-5 (see Lamiable et al.
[2020] for further reading) nor will it deal with how an
in vitro gut mucosal model can be employed with food
digesta in allergy sensitization research. We would like
to emphasize that an intestinal epithelial model for AOP
events MIE1-3 and KE1 does not allow one to perform
a full AOP risk analysis and thus to draw conclusions
about risks for immunological sensitization of the tested
proteins.

3 FEATURES THAT IMPACT
ALLERGEN TRANSPORT (MIE1-3)

3.1 Allergen transport

Transport of (partially) digested proteins/peptides,
including allergens through the intestinal barrier, can
occur by paracellular transport (through tight junc-
tions) (MIE1) or by transcellular transport, involving
endocytosis/exocytosis (transcytosis) mediated by mem-
brane receptors (MIE2) or unspecific endocytosis (MIE3)
(Figure 1). This transport relies on the intrinsic antigen
properties (Perrier & Corthésy, 2011; Samadi et al., 2018),
but also on the physiological features of the intestine
(discussed in Section 3.3) and extrinsic, food-related
factors (discussed in Section 3.4).

3.1.1 Allergen transport by paracellular
transport

Paracellular transport involves the passage of antigen
through the intercellular space and is regulated by the
integrity of tight junctions (Figure 2). This type of trans-
port occurs principally for small hydrophilic compounds
(≤3.5 kDa) and the antigens/peptides transported in this
way are not degraded. Paracellular transport is consid-
ered a passive transport that does not implicate antigen
processing, but that does require a previous stimulus
for the disruption of the tight junctions—representing
MIE1—allowing the antigen to pass through the epithelial
layer and to be directly exposed to the cells of the immune
system.
Tight junctions form a continuous and tight net-

work between the intestinal epithelial cells to seal the
lumen and to protect the intestinal tissue from luminal
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ALLERGEN SENSITIZATIONMODEL CRITERIA 975

F IGURE 1 Schematic overview of the pathophysiological processes leading to allergic sensitization that have been described in the
conceptual adverse outcome pathway (AOP), which summarizes the current knowledge of the cellular mechanisms and molecular pathways
underlying allergic food sensitization (Lozano-Ojalvo et al., 2019; Van Bilsen et al., 2017). The focus of this review on MIE1-3 and KE1 is
indicated by the red box. APC, antigen-presenting cells; DC, dendritic cells; KE, key events; MIE, molecular initiation events; MLN,
mesenteric lymph node

contamination. Tight junction complexes are constituted
by three families of transmembrane proteins, namely, the
claudin family (that can be divided into pore-forming and
barrier-forming claudins), the Marvel domain-containing
family (e.g., occludins), and the immunoglobulin super-
family (e.g., junctional adhesion molecules). These trans-
membrane proteins are bound to the cytoskeleton by intra-
cellular scaffold proteins, such as the zonula occludens
(ZO) (Paradis et al., 2021) (Figure 2). Beyond tight junc-
tions, adherens junctions (e.g., E-cadherin) and desmo-
somes also play a role in intestinal barrier integrity (Bar-
bara et al., 2021). A link between food allergy and intestinal
barrier permeability has been established. For example,
food-allergic patients have a significantly increased intesti-
nal permeability compared to control patients in the basal
state and following allergen ingestion as demonstrated by
different lactulose/mannitol urinary ratios (Andre et al.,

1987; Reitsma et al., 2014; Van Bilsen et al., 2017; Ventura
et al., 2006).
Some, but not all allergens can promote their para-

cellular passage by altering tight junction proteins and
decreasing the barrier integrity, thus impacting allergic
sensitization and the allergic response (Ali et al., 2020).
This is the case of wheat gliadins, peanut extract, and
kiwifruit Act d 1 (actinidin), which have been described
to increase the monolayer permeability by modifying the
interaction between occludins and ZO-1 (Drago et al.,
2006; Grozdanovic et al., 2016; Price et al., 2014). Like-
wise, wheat α-gliadins seem to augment the paracellular
permeability of the colonic epithelial cell line Caco-
2 by binding to the chemokine receptor CXCR3 that
is involved in tight junction damage (Lammers et al.,
2008). Similarly, the oral administration of hen’s egg
Gal d 2 (ovalbumin) to rats downregulated the mRNA
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976 ALLERGEN SENSITIZATIONMODEL CRITERIA

F IGURE 2 Allergen transport mechanisms across the intestinal epithelium. The paracellular and transcellular transport of allergens is
modulated by the processing of the allergen-containing food, the food matrix, and intrinsic allergen activity, but also by host physiology.
(a) Extrinsic and intrinsic factors that can affect allergen transport. (b) Paracellular transport regulated by the integrity of tight junctions that
consist, among others, of claudins, occludins, and zonula occludens (ZO). (c) Vesicle-mediated transcellular transport in which proteins can
either be endocytosed and directed to lysosomes for digestion, or transported intact to the basolateral side by transcytosis.
(d) Receptor-mediated endocytosis, such as allergen transport mediated by IgE-CD23 complexes

expression of ZO-1 and claudin-2, claudin-8, and claudin-
15 when compared to a phosphate-buffered saline (PBS)
control, and increased tight junction permeability, as mea-
sured using lactulose/mannitol urinary ratios (Chen et al.,
2014). The apical-to-basolateral translocation of shrimp
Pen j 1 (tropomyosin from Penaeus japonicas) in Caco-2
cells has also been attributed to self-enhanced paracellu-
lar transport, since Pen j 1 increased intestinal permeability
as measured using lucifer yellow translocation (Kunimoto
et al., 2011).
More commonly, environmental factors seem to signif-

icantly influence the integrity of the epithelial barrier,
including microbial factors (discussed in Section 3.3.3), a
(low-grade) chronic intestinal inflammation, our diet, or
other components such as nanoparticles or microplastics,
as notably highlighted in the “epithelial barrier hypoth-
esis” (Celebi Sozener et al., 2022; Tokuhara et al., 2019).
Indeed, the expression of barrier-forming claudins and
occludins is often downregulated in intestinal inflam-
matory, immune-mediated diseases in response to pro-
inflammatory cytokines secreted by immune cells that
populate the intestinal epithelium and the lamina propria,
such as macrophages, T-lymphocytes, innate lymphoid

cells (ILC), and intraepithelial lymphocytes (IEL). Notably,
inflammatory cytokines such as tumor necrosis factor-
alpha (TNF-α), interferon gamma (IFN-γ), interleukin
(IL)-1β, and IL-6 as well as allergy-related cytokines such
as IL-13 have been shown to promote intestinal bar-
rier permeability (Lee et al., 2018; Martini et al., 2017).
For example, TNF-α promotes the delocalization of the
claudins 5 and 8 from the tight junctions to the subtight
junction compartments and the endosomes, whereas IL-1β
increases the tight junction permeability through the redis-
tribution of occludins (Al-Sadi et al., 2008; Zeissig et al.,
2007). In contrast, the expression of claudin-2,which forms
a pore channel promoting cation influx and water into
the intestinal lumen, is generally increased in response to
TNF-α, IL-6, and IL-13 in intestinal inflammatory diseases,
including food allergy (Liu et al., 2013; Martini et al., 2017).
Claudin-2 was reported to be present in the small intestine
of nonallergic individuals, but its mRNA expression and
protein levelswere two- to threefold higher in patientswith
food allergies (Liu et al., 2013). Interestingly, claudin-2 was
shown to bind protein antigen (horseradish peroxidase)
and to promote its transport across the epithelial barrier
(Liu et al., 2013).
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➢ When determining the allergic potential of proteins,
their direct impact on tight junction integrity should be
taken into consideration by, for example, the determi-
nation of transepithelial electrical resistance (TEER),
the transport of paracellular-leaked molecule (lucifer
yellow, AS-FITC, FITC-Dextran 4 kDa), or by determi-
nation of the mRNA or protein expression of some of
the main tight junction proteins (occludins, claudins,
ZOs). Similarly, the interplay between allergens, the
epithelial barrier, and their environment should ide-
ally be considered, possibly by testing the passage
of an allergen under “healthy” conditions and under
compromised, “pro-inflammatory” conditions.

3.1.2 Allergen transport by transcellular
transport

In transcellular transport, antigens are directly absorbed
by intestinal epithelial cells through simple diffusion,
carrier-mediated transport processes (passive/facilitated
diffusion and active transport), endocytosis, and tran-
scytosis (Figure 2). Carrier-mediated transport via
facilitated diffusion regulates the transportation of the
luminal content along the concentration gradient through
membrane-bound carrier proteins. This mechanism
is most commonly used by highly hydrophilic com-
pounds (e.g., glucose) and is less relevant for larger
peptides/proteins. Endocytosis and transcytosis are the
most usual pathways for protein transport across the
intestinal barrier and can occur through different types of
cells (discussed in Section 3.2). Endocytosis is commonly
used by large polar peptides, which can bind the cells
and be incorporated into vesicles (Bouglé & Bouhallab,
2017). Upon endocytosis, proteins are either digested in
lysosomes or transcytosed intact. Transcytosis is a process
in which molecules are taken into cells by endocytosis,
but then they are transported via transcytotic vesicles and
exocytosed on the basolateral side (Tuma & Hubbard,
2003; Xu et al., 2019). Transcytosis tends to facilitate the
transport of hydrophobic peptides, which due to their
nonpolar character need to interact with the lipids in the
membrane of the epithelial cells prior to their cell inter-
nalization (Shimizu et al., 1997; Xu et al., 2019). Positively
charged proteins/peptides also seem to preferentially
follow a transcytotic route (e.g., caseins), meaning that
hydrophobicity and charge property affect peptide/protein
transportation routes (Yang et al., 2019).
Receptor-mediated transcellular transport of food

allergens—representing MIE2—have been described
through the CD23 receptor, the low-affinity FcεRII-IgE
receptor, which involves the delivery of immunologically
intact IgE-bound allergen complexes across the epithe-

lium through clathrin-mediated endocytosis (Engeroff &
Vogel, 2021). However, the requirement for the presence
of IgE suggests that this mechanism can only occur in
already sensitized people (Bevilacqua et al., 2004; Yu et al.,
2001). Similar to CD23, the neonatal Fc (FcRn) receptor
IgG facilitates the uptake of IgG–antigen complexes
and contributes to the development of oral tolerance
in the neonate (Berin, 2012). Other receptor-mediated
transcellular transport routes of food allergens have, to
our knowledge, not been described.
Unspecific transcellular transport—representing

MIE3—has been described for several allergens, including
peach Pru p 3 (nonspecific lipid transfer protein [nsLTP]),
wheat Tri a 19 (ω5-gliadin) and Tri a 14 (nsLTP), cow’s
milk Bos d 5 (β-lactoglobulin), peanut Ara h 1 (vicilin) and
Ara h 2 (2S albumin), soybean P34 allergen, Brazil nut Ber
e 1, and white sesame Ses i 1 (2S albumins) (Bernasconi
et al., 2006; Bodinier et al., 2007; Moreno et al., 2006;
Price et al., 2017; Sewekow et al., 2012; Tordesillas et al.,
2013). The transcellular transport across the epithelial
barrier of some of these allergens (Tri a 14, Pru p 3, Ses i
1, Ber e 1) seems to be facilitated by their high structural
stability, allowing them to cross the epithelium in their
native forms and making them probably more prone to
function as primary sensitizers (Bodinier et al., 2007;
Moreno et al., 2006; Sewekow et al., 2012; Tordesillas
et al., 2013). A receptor-mediated transport (MIE2) is
most likely to be involved in the transport of Pru p 3,
although other transport mechanisms cannot be excluded
(Tordesillas et al., 2013). Native and heat-denatured cow’s
milk Bos d 5 (β-lactoglobulin) can cross a Caco-2 cell
monolayer by a transcellular pathway and is degraded by
the epithelial cells during the transport (Bernasconi et al.,
2006; Rytkönen et al., 2006). Overall, the physicochemical
properties of allergens/proteins can thus be considered
as key factors associated with unspecific transcellular
transport, although other factors (e.g., cytokines) might
also play important roles in this type of transport. Indeed,
some ILs can potentiate the transcytosis of proteins
across the intestinal epithelium (Berin et al., 1999; Moon,
Vandussen, et al., 2014). IL-17 was reported to be the most
efficient inducer of the expression of the polymeric Ig
receptor, thus contributing to enhancing IgA-mediated
antigen transcytosis across mouse intestinal epithelial
cells (Moon, Vandussen, et al., 2014). Likewise, Berin et al.
(1999) described that IL-4 affects epithelial barrier func-
tion by enhancing the transcellular uptake of antigenic
proteins, thus suggesting that this IL might be crucial in
the pathophysiology of food allergies (Berin et al., 1999).

➢ When assessing whether protein transport may pose
a risk for allergic sensitization, factors such as the
route of transport and whether the protein enters the
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978 ALLERGEN SENSITIZATIONMODEL CRITERIA

lamina propria intact or as large peptides as well as
their physicochemical properties should be considered.
This could be determined by, for example, application
of different types of endocytosis inhibitors and baso-
lateral proteomics analyses (SDS-PAGE, LC–MS/MS).
For example, using different endocytosis inhibitors
(e.g., filipin III, monodansylcadaverine), Price et al.
(2017) reported that peanut Ara h 1 and Ara h 2 were
transported through the intestinal epithelial cells, start-
ing in the endosomes (through multiple endocytotic
mechanisms) and continuing in the lysosomes (Price
et al., 2017).

3.2 Intestinal cell types involved in
allergen transport

Distinct types of intestinal epithelial cells have been impli-
cated in the transport of allergens across the epithelial
barriers and the cell type by which allergens are trans-
ported might be determinant for allergic sensitization. An
overview of the relevant cell types and critical features that
should be considered for an in vitro intestinal epithelial
model to study the first key aspects of de novo allergic
sensitization is presented in Figure 3. These cell types
and critical features are more elaborately discussed in the
sections below.

3.2.1 Enterocytes

Enterocytes are highly abundant cells in the intestinal
epithelium that are capable of transcellular uptake of pro-
teins. Enterocytes are also involved in the transport of
different immunoglobulins (IgA, IgG, and IgE) into the
intestinal lumen. IgG and IgE promote allergen uptake
(discussed in Section 3.1.2), whereas secreted IgA neu-
tralizes allergens in the intestinal lumen and can thereby
protect against allergic sensitization (Berin, 2012). Beyond
their role in the transcellular uptake of allergens, ente-
rocytes also express the major histocompatibility com-
plex class II (MHC-II) and release exosomes containing
MHC-II complexes loadedwith endocytosed antigens both
on the apical and basolateral sides (Heuberger et al.,
2021). MHC-II expression is constitutive in the small
but not in the large intestine, and it is upregulated by
inflammatory stimuli such as IFN-γ (Heuberger et al.,
2021). Exosomes released by enterocytes might initiate or
shape the adaptive immune response by bringing antigen
to antigen-presenting cells (APC), such as dendritic cells
(DC), or by regulating T-lymphocyte activation, although it
remains unclear whether these exosomes induce a tolero-

genic or a pro-inflammatory response (Heuberger et al.,
2021).

3.2.2 Secretory epithelial cells

A subset of secretory epithelial cells implicated in pro-
tein/antigen transport are the mucus-producing goblet
cells, which deliver low molecular weight (<10 kDa) sol-
uble antigens to the lamina propria-located APC through
the so-called goblet cell antigen passages (GAP) (McDole
et al., 2012). These GAP are found in the small intestine,
in line with the small intestine being considered the most
common location for allergic sensitization (Newberry &
Hogan, 2021). In the steady state, GAP appear to play a
notable role in the induction of oral tolerance through
the delivery of luminal antigens to APC, by imprint-
ing tolerogenic properties on APC and by promoting the
maintenance of T-regulatory lymphocytes (Kulkarni et al.,
2020). Other secretory intestinal epithelial cell types, such
as Paneth cells and enteroendocrine cells, have also been
implicated in antigen passage (secretory antigen passages,
or SAP), although their role is thought to be insignificant
in the steady state (Kulkarni et al., 2020; Noah et al., 2019).
However, an increased antigen sampling by Paneth cells,
enteroendocrine cells, and goblet cells was observed upon
the induction of food allergy, resulting in the direct deliv-
ery of allergens to the mucosal mast cells (Noah et al.,
2019). Indeed, cell populations involved in allergen trans-
port were significantly altered under the influence of IL-13,
a cytokine secreted by the innate lymphoid type 2 (ILC2)
cells in response to alarmins (KE1, discussed in Section 4.1)
(Noah et al., 2019). It might be speculated that the pat-
terning of epithelial antigen passage and the subsequent
delivery to specific cell populations (APC, mast cells) is
an important factor in the response of the immune system
to dietary antigens (Newberry & Hogan, 2021; Noah et al.,
2019).

3.2.3 Microfold cells

Microfold cells (M-cells) are intestinal epithelial cells
lacking microvilli that are predominantly localized at
the epithelium overlying Peyer’s patches, although they
are also found interspersed among enterocytes (so-called
villous M-cells) (Dillon & Lo, 2019). M-cells capture and
actively transport particulate antigens (including large
macromolecules, aggregated antigens, IgA-complexed
antigens, bacteria, and viruses) by transcytosis across
the epithelium to deliver these antigens to underlying
immune cells. In support of this antigen-delivering
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ALLERGEN SENSITIZATIONMODEL CRITERIA 979

F IGURE 3 Critical features and cell types that should be considered for an in vitro intestinal epithelial model to study the first critical
steps (MIE1-3, KE1) of de novo allergic sensitization. (a) A variety of intestinal epithelial cells that are implicated in allergen transport,
including enterocytes (with MHC-II expression), goblet cells (but also other enteroendocrine cells), Paneth cells, and M cells (capable of
transcytosing particulate antigens) that can secrete alarmins (enterocytes, tuft cells). (b) Submucosal cell populations that have the potential
to modulate allergen transport and/or epithelial activation, such as DC, IEL, fibroblasts, and ILC. (c) Villi and microvilli. (d) A mucus layer
from 50 to 450 µm comprising MUC2. (e) Microbiota (interacting with the host’s immune system through various microbial factors). (f) Tight
junctions that respond to external stimuli. DC, dendritic cells; IEL, intraepithelial lymphocytes; ILC, innate lymphoid cells; MHC, major
histocompatibility complex

function, M-cells have a peculiar basolateral binding
pocket that can accommodate B-, T-, or myeloid cells and
have a low proportion of lysosomes compared to ente-
rocytes, thus limiting antigen degradation (Berin, 2012;
Dillon & Lo, 2019; Reitsma et al., 2014). M-cell-mediated
transport can either induce an antigen-specific immune
response or antigen tolerance (Dillon & Lo, 2019; Jang
et al., 2004). The targeted delivery of ovalbumin to Peyer’s
patch M-cells by fusing ovalbumin to the recombinant
reovirus protein sigma 1 protein prior to oral sensitization
to native ovalbumin was associated with an improved
oral tolerance compared to pretreatment with a PBS
control, but it should be noted that pretreatment with a
nonfused ovalbumin control was lacking (Suzuki et al.,
2008). Other studies indicated that Peyer’s patches are
dispensable for oral tolerance induction, that M-cells are
relatively rare in the steady state, and that mice deficient

in M-cells do not show a loss of oral tolerance, suggesting
that M-cell dietary antigen uptake is not essential for
oral tolerance induction and is a minor route of uptake
(Kulkarni et al., 2020; Newberry & Hogan, 2021; Pabst &
Mowat, 2012).
A specific role for M-cells in sensitization toward

aggregated allergens has been proposed, as aggregated
allergens might be predominantly taken up by M-cells
(Reitsma et al., 2014). The heat-induced aggregation of
β-lactoglobulin and α-lactalbumin increased uptake by
M-cells, whereas their soluble, native counterparts were
predominantly transcytosed by enterocytes (Roth-Walter
et al., 2008; Stojadinovic et al., 2014). Peanut protein was
observed to cross the intestinal epithelium of BALB/c
mice only in M-cells at intestinal Peyer’s patches and was
not observed in the paracellular spaces of normal intesti-
nal epithelium (Chambers et al., 2004). M-cell-mediated
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uptake of aggregated proteins was associated with a sig-
nificantly higher Th2 response and cytokine production
during the sensitization phase, but with a reduced induc-
tion of symptoms during the challenge phase (Roth-Walter
et al., 2008; Stojadinovic et al., 2014). Other studies using
enzymatic protein cross-linking did not corroborate these
findings and generally showed a lower allergic sensitiza-
tion upon antigen aggregation (Radosavljevic et al., 2014;
vanEsch et al., 2013).However, these studies did not specif-
ically investigate M-cell allergen transcytosis, indicating
that the exact role of M-cells in oral tolerance and aller-
gic sensitization remains to be further characterized. As
allergen size might be a determinant factor in the local-
ization of allergen uptake and the localization of allergen
uptake might in turn impact the reaction of the immune
system, M-cells are a requirement for an in vitro model to
study the first key aspects of de novo allergic sensitization
(Matsunaga et al., 2000).

3.2.4 Submucosal cell populations

Submucosal cell populations that are close to the intestinal
epithelial interface may cross talk directly with epithe-
lial cells by establishing cell–cell interactions and cell–
extracellular matrix interactions, which may significantly
influence the structure and function of the epithelial
barrier and subsequent intestinal protein translocation.
Myeloid-derived submucosal DC, scattered along the
entire small intestine, establish tight contact and associ-
ations with epithelial cells. The classical function of sub-
mucosal DC is to protect against luminal pathogens and to
establish regulatory responses to antigens by continuously
sampling the soluble and particle antigens transported by
the various epithelial cells (as described in Section 3.2.1–
3.2.3) or internalized by intraepithelialmacrophages (KE2)
(see also Box 1) (Liu et al., 2021; Schulz et al., 2009; Stagg,
2018). Different intestinal DC subtypes have been identi-
fied over the past years, which are called conventional DC
(cDC) 1 or 2, or plasmacytoid DC based on their pheno-
type or function (see Liu et al. [2021] for a review). Besides
this classical pathway, DC can also directly sample solu-
ble antigens in the gut lumen by the extension of dendrites
like periscopes between epithelial cells in the upper small
intestine (Rescigno et al., 2001) or through M-cell-specific
transcellular pores (Lelouard et al., 2012). During this
close epithelial association, elongated dendrites maintain
epithelial integrity by expressing tight junction proteins
(Rescigno et al., 2001; Sebrell et al., 2019). Steady-state
recruitment to and protrusion of the epithelium seem to be
regulated by the chemoattractant C-X3-Cmotif chemokine
ligand 1 (CX3CL1)/fractalkine and its receptor CX3CR1
(Niess et al., 2005). It has been shown that CX3CR1+-

intraepithelial DC do not appear to be bona fide DC, as
they do not migrate from the lamina propria to mesenteric
lymph node and cannot present luminal antigen to naive
T-lymphocytes (Butler et al., 2006; Chieppa et al., 2006).
Nevertheless, they do seem to be loaded with antigen
and, hence, they may play an accessory role, by pass-
ing it on to neighboring migratory CD103-expressing cDC
for transport and presentation. Intraepithelial DC associ-
ated with Peyer’s patches represent another DC subtype
involved in antigen sampling, as they lack CX3CR1 expres-
sion and require C-C motif chemokine receptor (CCR)
6/C-C motif chemokine ligand (CCL) 20 attraction for
epithelial association and luminal transepithelial-dendrite
sampling (McDonald et al., 2017; Sebrell et al., 2019). It
should be noted that phagocytic uptake of food allergens
directly from the intestinal lumen by DC has not yet been
visualized in vitro nor in vivo. In addition, epithelial asso-
ciation significantly reduced MHC-II expression on DC in
an in vitro monocyte-derived DC/Caco-2 co-culture model
(Butler et al., 2006). Thus, the functional significance of
different modes of antigen sampling by DC on allergic sen-
sitization remains poorly understood and requires further
investigation.
Beyond DC, also IEL impact the structure and function

of the epithelial barrier and intestinal protein transloca-
tion. Interspersed into the basolateral side of the intestinal
epithelium, IEL are highly abundant—with an estimated
1 IEL for every 10 intestinal epithelial cells—and directly
interact with intestinal epithelial cells through the expres-
sion of the CD103 integrin and CCR9 (Van Kaer &
Olivares-Villagómez, 2018). IEL directly promote themain-
tenance of epithelial cell barrier integrity by regulating
the differentiation of intestinal epithelial crypt cells and
by secreting keratinocyte growth factors and several other
cytokines (Danese, 2008; James et al., 2021; Konjar et al.,
2017; Qiu & Yang, 2013). IEL are of particular interest
in the context of food allergy, as an important role has
been described for the so-called γδIEL in the development
of oral tolerance. Indeed, the downregulation of the of
the γδ-T-cell receptor using an anti-delta-chain antibody
was linked to an impaired oral tolerance toward ovalbu-
min as demonstrated by antibody and T-lymphocyte cell
responses (Ke et al., 1997). Also, it has been described that
the phenotype of γδIEL is modified toward a functional
APC-like phenotype upon exposure to cholera toxin,which
is classically used to induce allergic sensitization in mice
(Frossard, Asigbetse, et al., 2015). If and how IEL directly
impact allergen transport remains, however, to be further
investigated.

➢ An in vitro intestinal epithelial model for the study
of allergic sensitization would ideally include all cell
types that are involved in antigen/allergen transport,
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including enterocytes,M-cells, secretory epithelial cells
(such as goblet cells), and possibly DC and IEL. How-
ever, it will likely be challenging to create a model
with the same physiological ratios and distributions
of these cells as in vivo. To better characterize the
respective function of the different cell types in allergen
transport, cell type and morphology of the epithelial
monolayer can be assessed by confocal microscopy of
cell type marker proteins as it was previously done for
the murine intestine (Knoop et al., 2020).

3.3 Intrinsic factors that impact
allergen transport

Physiological features of the gastrointestinal system also
have the capacity to influence allergen transport and thus
MIE1-3. Indeed, the gastrointestinal system has multiple
functions and balances digestion, food absorption, oral tol-
erance, and immunity as well as hosting the intestinal
microbiota.

3.3.1 Villi and microvilli

To maximize the absorptive surface, the small intestinal
epithelium consists of repetitive sequences of crypts and
villi. To further increase the absorptive area for nutri-
ents, vitamins, ions, and water, the enterocyte luminal
surface is in turn covered by microvilli, which contain
multiple transporter proteins, ion channels, and enzymes
that together form the brush border (Dutton et al., 2019).
To accurately determine allergen transport, the pres-
ence of villi and microvilli is thus needed. Ideally, these
(micro)villi should be similar to those found in the nor-
mal human small intestinal epithelium, where villous
height is 567–640 µm and villous diameter is 157–160 µm
(Dutton et al., 2019). In the presence of bowel inflam-
mation, villus area and height may decrease (Pereira e
Silva et al., 2018), but whether this affects specific allergen
translocation mechanisms or degree of alarmin release is
not known.

3.3.2 Mucus layer

On top of the apical intestinal epithelial surface, the
mucus layer forms a chemical barrier consisting of high-
molecular-weight glycoprotein complexes of gel-forming
mucins secreted by the goblet cells, as well as water,
lipids (1%–2%), electrolytes, secretory IgA, and antimi-
crobial peptides (Barbara et al., 2021). As the first layer
of physical defense, the mucus plays an important role

in reducing the adherence of pathogenic microbes and
microorganism epithelial penetration and shielding the
host from digestive enzymes. In the small intestine, the
mucus consists of one layer of approximately 50–450 µm
that is relatively loose and permeable, whereas the mucus
layer in the large intestine is composed of two layers: an
outer layer of 300–700 µm and an inner layer of 100–
400 µm that is relatively impermeable (Dutton et al., 2019;
Parrish et al., 2022). The gel-forming mucins have large
numbers ofO-linked oligosaccharide chains that give them
a negative charge and which provide numerous bind-
ing sites for antigens (Li, Crouzier, et al., 2013). In the
small and large intestines, Muc2 is the main secreted
mucin, while Muc13 and Muc17 are the main trans-
membrane mucins that compose the carbohydrate-rich
glycocalyx covering the intestinal epithelium (Schneider
et al., 2018).
Although a direct link between allergen sensitization

and the mucus layer has not been clearly established, it
is reasonable to assume that the composition, porosity,
or thickness of the mucus layer impacts antigen uptake.
The mucus filters and limits the uptake of molecules,
which means that only a relatively porous mucus layer, as
found in the small intestine, allows for an effective anti-
gen uptake (Johansson & Hansson, 2016; McDole et al.,
2012). Interactions between the host immune system and
the mucus layer also exist. On the one hand, the mucus
layer might impact the host immune response to food
antigen, as the mucin Muc2 was found to deliver tolero-
genic signals to intestinal immune cells (Shan et al., 2013).
Indeed, as opposed towild-typemice, no oral tolerancewas
induced in Muc2-deficient mice that were gavaged with
ovalbumin before an oral challenge with the same aller-
gen. On the other hand, mucin production is regulated
by host immune (e.g., cytokines) and microbial factors,
and a depletion of the mucus layer has been observed in
food-intolerant individuals and patients with inflamma-
tory bowel disease (Parrish et al., 2022). Future studies are
needed to better characterize the roles of the mucus layer
in allergen transport (Parrish et al., 2022).

3.3.3 Microbiota

The human gastrointestinal tract (GIT) harbors numerous
species of commensal microorganisms—called the intesti-
nal microbiota—that coexist in a symbiotic relationship
with the host under normal circumstances. Themicrobiota
has a key role in the physiological and immunological pro-
cesses that take place in the intestine. In the context of
food allergy, the intestinalmicrobiota can be considered an
intrinsic environmental factor that is crucial not only for
allergen sensitization but also for the maintenance of the
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integrity of the intestinal epithelial barrier, thus possibly
influencing allergen transport (Renz & Skevaki, 2021). As
such, when studying the impact of the microbiota on aller-
gen transport, effortsmust bemade tomimic themicrobial
ecosystem of the upper part of the GIT rather than the
colon. Nonetheless, it might be hypothesized that the cur-
rent dietary shift from the consumption of easy-digestible
proteins (milk, meat) to less digestible forms of proteins
(e.g., legumes) might render the colon and its microbiota
more important for allergic sensitization in the near future.
The resident microbiota interact with intestinal

epithelial cells and the immune system by diverse
mechanisms, such as proteinaceous molecules called
microbe-associated molecular patterns or metabolism-
derived byproducts (Delgado et al., 2020) that act as
signaling molecules promoting regulatory responses in
the host (Brown et al., 2013). For example, secretion of
the epithelial cytokine APRIL (a proliferation-inducing
ligand) in response to bacterial detection plays a critical
role in T-lymphocyte-independent IgA class switching
of B-lymphocytes (Wang et al., 2017). However, under
certain circumstances or perturbations, the microbial
equilibrium can be lost (dysbiosis) and some so-called
pathobionts (likewise members of the microbiota) may
overgrow, disrupting the microbial ecological balance and
compromising the intestinal permeability and/or induc-
ing inflammation (Chow et al., 2011). In a dysbiotic state,
pathobionts and their metabolites and toxins can notably
impact the intestinal epithelial barrier by impacting tight
junction integrity. For example, tight junction integrity
is reduced by the pathogenic species of Escherichia coli
and Salmonella typhimurium (Lee et al., 2018). Similarly,
lipopolysaccharide, which is an endotoxic component of
the outer walls of gram-negative bacteria, might reduce
epithelial barrier integrity by acting upon the Toll-like
receptor 4 and by altering the expression and localization
of ZO-1 and occludin tight junction proteins (Lee et al.,
2018). Beyond this indirect interaction of the microbiota
and the intestinal epithelial barrier, it remains unclear
to what extent microbiota directly interact with protein
allergens in a context of allergic sensitization.
An important aspect to consider for the design of in vitro

intestinal absorption models regards the composition and
diversity of the intestinal microbiota that is not the same
throughout the small intestine (where protein absorption
takes place, and the host immune system interacts with
food antigens) and the large intestine. Another aspect to
consider is the individual’s age (Kondrashina et al., 2021)
as most food allergies occur in infancy when the micro-
biota and the immune system are still under development.
Colonization by diverse microbiota and microbiota–host
cross talk is of key importance for the development of a
functional immune system.After birth, theGIT of the new-

born is colonized by different microbial communities that
increase in number and diversity until reaching a more
stable composition at approximately 2–3 years old (Yat-
sunenko et al., 2012), the age range that correspondsmostly
to the acquisition of oral tolerance for the major food aller-
gens (Rachid & Chatila, 2016). Indeed, a wide number of
current reviews highlight the importance of the correct
establishment of the gut microbiota for the prevention of
food allergy (Lee et al., 2020; Nance et al., 2020; Rachid &
Chatila, 2016; Stephen-Victor et al., 2020).

➢ Physiological features of a tissue or cell culture can
be checked via histology and microscopy. For exam-
ple, histochemical staining with Alcian blue/PAS can
visualize the level of secreted mucus, while immuno-
histochemistry is a good method for visualizing cell
type-specific marker proteins as well as villi forma-
tion. The use of enzyme-linked immunosorbent assays
(ELISA) or the enzyme-linked lectin assay represents
a simple alternative for the quantification of mucins,
although this method will not provide insight into
epithelial morphology and cell type distributions or
cell–cell interactions (Plaisancié et al., 2013). The inclu-
sion of the microbiota in a cell model of allergen
transport remains a challenge.

3.4 Extrinsic factors that can affect
allergen transport

The transport of allergens can also be affected by extrin-
sic factors, which include structuralmodifications induced
by digestion, food processing, or components of the food
matrix. It is well-established that these factors are deter-
minant in reducing or increasing the allergenic potential
of different proteins, for example, by generating small pep-
tides that cannot be recognized by the immune system or
by the formation of protein aggregates that delay digestion
(Costa, Bavaro, et al., 2022; Costa, Villa, et al., 2022).

3.4.1 Allergen digestibility

The process of protein digestion starts in the stomach,
where the main activators are hydrochloric acid and
pepsin, and continues in the small intestine, where most
of the protein digestion occurs through the action of
the pancreatic enzymes. In the small intestine, pepti-
dases tethered to the brush border membrane, such as
aminopeptidases, carboxypeptidases, endopeptidases, and
dipeptidases, complete peptide digestion by reducing them
to di/tripeptides or free amino acids (Ozorio et al., 2020)
(see Sun et al. [2022] for an excellent review on the
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gastrointestinal fate of food allergens and its relationship
with allergenicity). The majority of dietary proteins are
fully converted into di/tripeptides and amino acids and
are absorbed by the intestinal epithelial cells in the form
of nutrients. Still, large immunogenic peptides or even
intact proteins can reach the epithelial barrier (Kohlmeier,
2015; Shen & Matsui, 2019). Although resistance to gas-
trointestinal digestion cannot be considered as a rule to
identify allergenic proteins, many important allergens are
(partly) resistant to gastrointestinal digestion and thus
can reach the epithelial barrier immunologically intact
(Akkerdaas et al., 2018; Verhoeckx et al., 2019). The extent
of digestion determines the allergen transport mecha-
nism, with intact allergens crossing the epithelial barrier
by transcytosis/transcellular transport, while fragmented
peptides can follow different routes, either by paracellular
or transcellular pathways. These phenomena have already
been described for cow’s milk Bos d 5 (β-lactoglobulin)
and hen’s egg Gal d 4 (lysozyme) (Bernasconi et al.,
2006; Yokooji et al., 2013). Data from literature sug-
gest that when proteolytic activity during digestion is
decreased, probably as a consequence of a lower enzyme
(pepsin/trypsin)–substrate ratio, some allergens may be
absorbed by paracellular rather than by transcellular trans-
port, which could be linked to an increased potential for
sensitization. Additionally, some pharmacological drugs
(e.g., anti-inflammatory compounds such as aspirin and
diclofenac) might also impact the mechanism of allergen
transportation, thus favoring paracellular transport over
the transcellular routes. When modeling allergen trans-
port, the digestibility of food proteins should thus be
considered, and special attention should be paid to allergen
structure following digestion to understand the potential
interaction of digested allergens with intestinal epithe-
lial cells (Sun et al., 2022). In this context, the impact of
brush border enzyme activity should also be taken into
account (Di Stasio et al., 2020). Similarly, various kinds
of host- and bacteria-derived proteases and peptidases
might impact the digestibility of dietary proteins and their
absorption.

3.4.2 Food processing and food matrix

Food processing can increase the bioavailability of nutri-
ents and enhance the safety of foods for human con-
sumption. Food processing as well as the food matrix can
also have a major impact on digestion and subsequent
transport of the nutrients through the intestinal epithelial
barrier. Different processing methods may induce several
physicochemical alterations on food proteins, including
hydrolysis of peptide bonds, denaturation, aggregation
by disulfide and noncovalent bonds, as well as potential

food component interactions of the matrix, namely, lipids,
carbohydrates, or other micronutrients (e.g., vitamins,
minerals, polyphenols), which may affect the allergenic
potential of proteins (Costa, Bavaro, et al., 2022; Costa,
Villa, et al., 2022; Sun et al., 2022) (see Sun et al. [2022]
for an excellent review). For instance, a food matrix with
a high content of proteins can delay gastrointestinal diges-
tion and the epithelial transport of food allergens, shaping
their sensitizing capacity (Schulten et al., 2011). Likewise,
lipids have been demonstrated to have a protective effect
on allergen stability during gastrointestinal digestion and
allergen transport, also contributing to preserve the aller-
genic potential of different food allergens (Costa, Bavaro,
et al., 2022; Costa, Villa, et al., 2022).
Heat-induced aggregation and glycation of allergens

significantly lower allergen transport. Indeed, although
soluble fractions of Bos d 5 (β-lactoglobulin) and Bos d
4 (α-lactalbumin) were rapidly transcytosed through ente-
rocytes both in vitro and in vivo (mouse model), the
formation of aggregated Bos d 5 and Bos d 4 structures
induced by pasteurization reduced transcytosis across
Caco-2 monolayers (Roth-Walter et al., 2008). Similarly,
Bos d 5 glycation drastically reduced its transcytosis
probably due to partial unfolding, and/or aggregate for-
mation (Perusko et al., 2018). Likewise, the native form
of the allergenic peptide derived from β-lactoglobulin,
KIDALNENKVLVL, is more easily transported than their
monolactosylated forms through the Caco-2 monolayer
(Gasparini et al., 2022). Additionally, it was suggested that
protein transport is glycosylation specific since the trans-
port rate of bovine serum albumin glycosylated with α-Gal
was different from an NA1 glycosylated form, a carbo-
hydrate modification of similar size (Krstić Ristivojević
et al., 2020).
In another study, heating hen’s egg Gal d 2 (ovalbu-

min) and Gal d 1 (ovomucoid) prevented their transport
across the human intestinal epithelial cells, probably by
hampering the transcytosis process (Martos et al., 2011). An
important role for the intestinal epithelium was proposed
by Lupi et al. (2019), who demonstrated that heated and
heated/digested wheat gliadins were not able to degranu-
late rat basophil leukemia cells before transport across a
Caco-2 epithelial barrier, but that this capacity was par-
tially recovered after transport (Lupi et al., 2019). The
authors also concluded that especially the aggregated
forms of α-gliadins were able to cross the Caco-2 epithelial
monolayer, but that also the paracellular permeability of
the Caco-2 monolayer was increased due to the α-gliadins
exposure (Lupi et al., 2019).
In contrast to heat-induced aggregation and glycation,

dietary lipids might facilitate the intestinal transport of
proteins through lipid-mediated uptake or disruption of
the intestinal barrier (Angelina et al., 2016; Mine &
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984 ALLERGEN SENSITIZATIONMODEL CRITERIA

Zhang, 2003;Wang et al., 2009) and, in consequence, mod-
ulate the allergenic properties of proteins (López-Fandiño,
2020). Wang et al. (2009) found that the administration of
allergens together with long-chain triacylglycerols to mice
enhanced their absorption through intestinal epithelial
cells and systemic dissemination via chylomicron forma-
tion, eventually promoting oral tolerance (Wang et al.,
2009). Conversely, co-administration of shorter chain tri-
acylglycerols or other lipids that are preferentially taken
up through Peyer’s patches favored subsequent trans-
port of proteins to the draining mesenteric lymph nodes
and increased their immunogenicity (Li, Wang, et al.,
2013). Moreover, a recent study reported that egg phos-
pholipids reduce the solubility of egg white proteins in
simulated duodenal fluid, impairing epithelial absorp-
tion and promoting antigen delivery to Peyer’s patches
(Pérez-Rodríguez et al., 2021).
The interactions between food proteins and soluble car-

bohydrates used in the preparation of a wide range of
foods, as stabilizers, thickeners, and emulsifiers, can exert
a protective effect toward proteolysis and reduce protein
digestibility, affecting protein transportation through the
epithelial barrier. Jiménez-Saiz et al. (2013) reported higher
IgE-binding activities of Gal d 1 (ovomucoid) and Gal
d 2 (ovalbumin) in duodenal digests when those aller-
gens were mixed with functional biopolymers commonly
used in the food industry (pectin, gum Arabic, and xylan),
which was attributed to a lower efficiency in the diges-
tion of these proteins (Jiménez-Saiz et al., 2013). Similarly,
a 0.2% concentration of the emulsifier polysorbate-80,
but not the natural emulsifier lecithin, increased para-
cellular transport of different allergens by altering tight
junction functionality through low cytotoxicity on Caco-2
monolayers (Khuda et al., 2021).
Other processing factors that modulate allergen trans-

port include reduction or alkylation, or proteolysis follow-
ing exposure to Lactococcus lactis, which were shown to
result in a more efficient transepithelial transport of cow’s
milk Bos d 5 (β-lactoglobulin) (Bernasconi et al., 2006).
Matrix factors such as the presence of aromatic amino acid
ethyl esters also inhibited the transcellular transport of
hen’s egg Gal d 2 (ovalbumin) through Caco-2monolayers,
suggesting that food constituents, such as aromatic amino
acids and their derivatives, can affect the permeability of
the epithelial barrier and may in turn shape the immune
responses to luminal allergens (Kobayashi & Watanabe,
2003).

➢ The digestibility and processing of the allergen, as well
as the matrix in which it is ingested, heavily influ-
ence allergen transport. Globally, allergen digestibility
impacts the transport of allergens and potentially aller-
gic sensitization. The formation of aggregated struc-

tures during the application of heat treatments and gly-
cation seems to hinder allergen transport by inhibiting
their transcellular transportation, while lipids might
facilitate allergen transport. It is thus advised to include
an in vitro digestion procedure,with andwithout a food
matrix, when applying protein samples within in vitro
intestinal sensitization assays to mimic the in vivo-
like consumption as much as possible, even when an
allergen is studied that is known to be proteolytically
resistant.

4 FEATURES THAT IMPACT
EPITHELIAL ACTIVATION (KE1)

Epithelial activation (KE1) is defined as a sensitizer‑related
inflammatory response at the epithelial level, most com-
monly characterized by the release of “alarmins.” The
release of these alarmins will shape the reaction of the
underlying immune cells involved in the sensitization pro-
cess (KE2-5) (see Figure 1). This section will be focused
specifically on the activation of the gastrointestinal epithe-
lium, although it should be noted that relatively little data
are available on this type of epithelial activation, when
compared to the skin or respiratory epithelium.

4.1 Alarmin release

Alarmins are defined as “endogenous, constitutively
expressed, chemotactic, and immune-activating proteins
or peptides that are released following degranulation, cell
injury or death, or in response to immune induction” (Yang
et al., 2017). In the context of allergy, the alarmins IL-25, IL-
33, and thymic stromal lymphopoietin (TSLP) have been
identified as drivers of the allergic response (Ali et al.,
2020).

4.1.1 Interleukin-33

IL-33 is an alarmin that is predominantly expressed by
mucosal endothelial and epithelial cells, but also by
immune cells and subendothelial myofibroblasts and that
is responsive to tissue damage following injury or infec-
tion (Gupta et al., 2017; Pascual-Reguant et al., 2017). In
healthy humans and mice, IL-33 is mainly detected in
the endothelial cells and subendothelial myofibroblasts
near the intestinal crypts, but its expression is induced
in intestinal epithelial cells and infiltrating immune cells
following inflammation, allergic sensitization, and celiac
disease (Mahapatro et al., 2016; Pan et al., 2021; Pascual-
Reguant et al., 2017; Perez et al., 2020). Secreted IL-33 acts
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ALLERGEN SENSITIZATIONMODEL CRITERIA 985

upon the widely expressed ST2 receptor to regulate both
inflammation and intestinal tissue homeostasis. For exam-
ple, IL-33 can directly act upon intestinal immune cell
populations, such as ILC2, DC, T-regulatory lymphocytes,
cytotoxic T-lymphocytes, and natural killer cells (NK)
(Perez et al., 2020). The importance of IL-33 in food allergy
was shown using ST2 knockout mice, which showed an
80% reduction in peanut-specific IgE levels following a
peanut sensitization regimen (Chu et al., 2013). Also, the
injection ofmonoclonal antibodies against IL-33 prevented
the development of food allergy upon oral sensitization
with egg white and medium-chain fatty acids (Khodoun
et al., 2018). The importance of IL-33 in food allergy is
further underlined by the results of a phase 2 clinical
trial using etokimab, an anti-IL-33 antibody, which shows
to be promising for the desensitization of peanut-allergic
individuals (Chinthrajah et al., 2019).
Despite the expression of IL-33 by cells of the intestinal

mucosa, it is not yet clear whether (damaged) intestinal
epithelial cells are the main source of IL-33 in food allergy
(Ali et al., 2020; Hodzic et al., 2017). Indeed, treatmentwith
recombinant IL-33 during skin sensitization with hen’s
egg Gal d 2 (ovalbumin) was also able to promote food-
induced allergic symptoms (Han et al., 2018). Alternatively,
the release of IL-33 from intestinal epithelial cells follow-
ing inflammatory stimuli might (in part) be mediated by
IEL (see Section 3.2.4) (Pascual-Reguant et al., 2017). Direct
stimulation of IL-33 by allergens in intestinal epithelial
cells has, however, been described. For example, the peach
allergen Pru p 3 as well as the allergens tropomyosin and
ovalbumin were able to upregulate IL-33 gene expression
in Caco-2 cells or themouse large intestinalmodel CMT93,
respectively (Tordesillas et al., 2013;Wang, Lin, et al., 2021).
Only few studies have, however, demonstrated the actual
release of IL-33 from intestinal epithelial cell models. A
recent study on milk formulas used to treat cow’s milk
allergy demonstrated a differential capacity of some of
these formulas to induce IL-33 secretion from Caco-2 cells
using a highly sensitive ELISA (Paparo et al., 2021). How-
ever, what cellular source of IL-33 is themain driver of food
allergy remains to be further established and more studies
on the role of intestinal epithelial cell-secreted IL-33 are
needed.

4.1.2 Thymic stromal lymphopoietin

TSLP is an alarmin with a structural analogy to IL-7
and is secreted by mucosal epithelial cells (skin, lung,
intestine). Different signals and cytokines can promote
TSLP release, including viruses, bacterial peptidoglycans,
double-stranded RNA, cytokines (IL-1, IL-4, IL-13, TNF-
α), and allergens (Cianferoni & Spergel, 2014). TSLP acts

through a heterodimeric receptor complex consisting of an
IL-7 receptor α-chain (IL-7Rα) and a TSLP receptor chain
and that is expressed on a variety of immune cells, as well
as epithelial cells (Ziegler, 2012). Secreted TSLP can pro-
mote lymphocyte proliferation and differentiation, and has
been suggested to prime DC to promote the differentiation
of T-lymphocytes toward the inflammatory Th2 pheno-
type (Ziegler, 2012). In mice intestine, steady-state mRNA
levels of TSLP appear to be highest in the caecum and
the large intestine, but the expression of TSLP is rapidly
induced in mice duodenum following the oral sensitiza-
tion to peanut using cholera toxin (Chu et al., 2013). A
recent study also suggested a high expression of TSLP in a
subset of Tuft cells, the so-called Tuft-2 cells (Haber et al.,
2017). Despite the important role of TSLP as a promotor
of atopic inflammation and Th2 inflammatory responses,
the exact role of TSLP in the development of food allergy
is not completely clear (Cianferoni & Spergel, 2014). Using
TLSP receptor knockout mice, Chu et al. (2013) provided
evidence that intact TSLP signaling was not required for
the development of allergic symptoms upon peanut sensi-
tization (Chu et al., 2013). In contrast, another study using
oral sensitization to cow’s milk Bos d 5 (β-lactoglobulin)
using cholera toxin did find a role for TSLP, showing that
the absence of the TSLP receptor partially prevented sen-
sitization and significantly reduced anaphylaxis after an
oral allergen challenge (Frossard, Zimmerli, et al., 2015).
Also, monoclonal antibodies against TSLP prevented the
development of food-induced allergic reactions upon oral
sensitization with egg white proteins and medium-chain
fatty acids (Khodoun et al., 2018). This specific study
assessed the respective roles of IL-25, IL-33, and TSLP
and found that the inhibition of the individual alarmins
suppressed food allergy, but that optimal suppression was
obtainedwhen a cocktail of monoclonal antibodies against
all three alarmins was used (Khodoun et al., 2018).
Allergens have the capacity to promote TSLP expres-

sion and secretion from intestinal epithelial cell models.
Indeed, the roasted peanut allergen Ara h 3 (11S globu-
lin) promoted the gene expression of TSLP in Caco-2 cells
compared to raw peanut, while tropomyosin and ovalbu-
min increased TSLP gene expression in CMT93 cells, and
the peach nsLTP allergen Pru p 3 induced TSLP expres-
sion in Caco-2 monolayers (Tordesillas et al., 2013; Wang,
Lin, et al., 2021; Wang, Sun, et al., 2021). As for IL-33,
only few studies have measured the actual release of TSLP
from intestinal epithelial cell models. Using Caco-2 cells,
an induction of TSLP release following IL-1, TNF-α, or
butyrate treatment or specific milk formulas used to treat
cow’s milk allergy was observed (Cultrone et al., 2013;
Paparo et al., 2021). Although TSLP release in response
to allergens has not been studied in more complex mod-
els of the intestinal epithelium, it is thus possible that
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986 ALLERGEN SENSITIZATIONMODEL CRITERIA

to determine the impact of allergens on TSLP release, a
highly sensitive ELISA is needed (<5 pg/ml) and/or that
co-treatment with TSLP-activating cytokines such as IL-1
or TNF-α is necessary.

4.1.3 Interleukin-25

IL-25 is only secreted by the so-called tuft cells located
at the intestinal epithelium. Tuft cells are relatively
rare cholinergic chemosensory cells known to have an
important role in the Th2-mediated immune reactions
against parasitic helminth infections, protozoa, and likely
food allergy (Harris, 2016). The ligands and receptors
involved in the release of IL-25 from tuft cells are not yet
fully understood, but known ligands for tuft cells include
bacterial quorum-sensing molecules and the metabolite
succinate (Billipp et al., 2021). Tuft cell-secreted IL-25
activates intestinal ILC2 (discussed in Section 4.2.2) to
promote the secretion of IL-13, a cytokine that stim-
ulates intestinal remodeling and that seems to impact
aspects of innate tissue memory or “training” (von Moltke
et al., 2016). Beyond IL-25, tuft cells also secrete cysteinyl
leukotrienes, which are lipid signalingmolecules that con-
tribute to the activation of ILC2 (Billipp et al., 2021).
In the context of food allergy, the role of IL-25 remains
somewhat controversial. Using mice with impaired IL-25
signaling (IL-17RB knockout mice), no significant differ-
ence in peanut-specific IgE levels was observed following
gastrointestinal sensitization to peanut (Chu et al., 2013).
In contrast, a recent study using skin sensitization showed
that IL-25 derived from intestinal tuft cells in combina-
tion with systemic IL-33 activated ILC2 and promoted IL-4
and IL-13 secretion, which in turn promoted anaphylaxis
upon an oral food challenge (Leyva-Castillo et al., 2019).
Although tuft cells do not directly transport allergens and
it remains unclear how tuft cells respond to allergens
to secrete IL-25, their exclusive secretion of IL-25 would
warrant their inclusion in an intestinal barrier model for
allergic sensitization.

4.1.4 Other alarmins

Besides IL25, IL-33, and TSLP, other alarmins such as
uric acid and high-mobility group Box 1 protein are
also secreted by intestinal epithelial cells in response to
stressors, such as cholera toxin and advanced glycation
end-products, which can contribute to food allergy devel-
opment (Kong et al., 2015; Smith et al., 2017; Wakabayashi
et al., 2018). Other epithelial cell-derived cytokines and
chemokines (soluble proteinmediators critical for intercel-
lular communication), such as IL-1α, IL-18, CCL20, CCL22,

CX3CL1, granulocyte-macrophage colony-stimulating fac-
tor (GM-CSF), galectin-9, and transforming growth factor-
β, also modulate the allergic response though their impli-
cation remains to be (further) validated in an intestinal
context (Overbeek et al., 2019; Roan et al., 2019; Van Bilsen
et al., 2017).

➢ No clear link has yet been described between the secre-
tion of alarmins by the intestinal epithelium and the
development of food allergic symptoms. Similarly,
the impact of food allergens on alarmin section by the
intestinal epithelium remains understudied and only
few studies have managed to detect alarmin release
from intestinal epithelial cell models (e.g., Caco-2). An
in vitro model composed of a wide range of epithelial
cell types and resembling the human intestinal epithe-
lium is therefore needed to clarifywhether and how the
secretion of these alarmins is regulated in response to
food allergens and innocuous proteins/peptides and to
inform about their implication in allergic sensitization.

4.2 Cell types that may affect and
contribute to epithelial activation

Luminal cell populations that are close to the intestinal
epithelial lining to establish cell–cell and cell–extracellular
matrix interactions may significantly influence the struc-
ture and function of the epithelial barrier, possibly affect-
ing allergen transport and intestinal epithelial activation.
In this context, we here describe a selection of cells that
could ameliorate an intestinal epithelial cell model for
screening purposes.

4.2.1 Fibroblasts

Underlying the intestinal epithelium, fibroblasts and
myofibroblasts are present as part of the mesenchymal cell
population in the submucosa. Fibroblasts secrete extra-
cellular matrix components that can ameliorate epithelial
cell morphology and maintain the structural integrity of
the intestinal mucosa (Dang et al., 2021; Darling et al.,
2020). Fibroblasts also regulate the proliferation and dif-
ferentiation of intestinal epithelial stem cells via paracrine
action (Göke et al., 1998), as well as immune cell home-
ostasis, through the secretion of IL-6 and CCL2 and
through the direct interaction with immune cells (Dang
et al., 2021). A direct relationship between fibroblast func-
tion and the allergic sensitization pathway has not been
described. However, it is worth mentioning the secretion
of the KE1 alarmin IL-33 by colonic subepithelial fibrob-
lasts upon microbial exposure as a result of a breached
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ALLERGEN SENSITIZATIONMODEL CRITERIA 987

epithelial barrier (Mahapatro et al., 2016). Thus, in the
context of food allergy, the role of fibroblasts remains
ill defined, but given their role in intestinal barrier
homeostasis and alarmin function, these cells should be
considered.

4.2.2 Cells of the innate immune system

The innate immune system is the first, nonspecific line
of defense against pathogens, but it can also respond to
allergens. Beyond its direct implication in the allergic
sensitization cascade or allergic reactions (basophils, mast
cells), the intestinal innate immune system might create
an environment that supports epithelial cell activation. For
example, IEL might promote IL-33 secretion from intesti-
nal epithelial cells, as previously described in Section 4.1.1.
Beyond IEL, ILC are a family of cytokine-activated,
cytokine-secreting lymphocytes that reside in barrier
tissues, including the intestinal epithelium, and that
participate in maintaining mucosal homeostasis (Eberl
et al., 2015). ILC contribute to maintain epithelial barrier
integrity and thus potentially impact allergen transport,
and also secrete cytokines that might affect epithelial
cell activation (Fan et al., 2019; Jowett et al., 2021). ILC1
subsets produce IFN-γ, TNF-α, GM-CSF, granzyme, and
perforin in response to viral- or pathogen-infected or
injured tissues, whereas ILC3 produce IL-22 that promotes
mucin production and epithelial cell proliferation (Fan
et al., 2019). In the context of food allergy, ILC2 are
important in shaping the immune response against aller-
gens (Fan et al., 2019). ILC2 produce different cytokines
(IL-4, IL-5, IL-9, IL-13, and amphiregulin) in response
to the IL-25 alarmin secreted by tuft cells (discussed in
Section 4.1.3), but also respond to other alarmins, such
as IL-33 or TSLP. ILC2-secreted IL-13 has in turn been
directly implicated in the regulation of cellular allergen
transport routes (Noah et al., 2019). Although several of
the cytokines produced by ILC2 have been implicated in
the induction of food allergy, these cytokines also help to
conserve and repair the epithelial barrier and might serve
as a negative feedback to lower epithelial activation. ILC
are thus an example of how cells of the innate immune
system shape the intestinal environment. The impact of
ILC-derived cytokines on epithelial cell activation has, to
our knowledge, not been directly studied.

➢ ILC and IEL are key examples of cells of the innate
immune system that create an environment that can
influence epithelial barrier integrity and epithelial acti-
vation, whereas fibroblasts might directly contribute
to IL-33 secretion. The targeted inclusion of these cell
types in an intestinal barrier model for allergic sensi-

tization might shed light on these interactions and the
ramifications for de novo allergic sensitization.

5 EXISTING COMPLEX IN VITRO
MODELS THAT CAN BE USED TOMIMIC
INTESTINAL ALLERGEN
TRANSLOCATION AND EPITHELIAL
ACTIVATION

To accurately model de novo allergic sensitization and to
study the impact of novel food proteins on AOP events
MIE1-3 (allergen transport) andKE1 (epithelial activation),
we have highlighted the different features that impact
and/or modulate these AOP events. In the past, tumor
enterocyte cell lines of human or porcine origins have
predominantly been used as models to study allergen
transport, including Caco-2, HT29, T84, and IPECJ2 (see
Cubells-Baeza et al. [2015] and Lozano-Ojalvo et al. [2019]
for an extensive description). More recently, complexi-
fied variants of these models have been described in the
literature, including a co-culture of Caco-2 with mucus-
secreting HT29-MTX cells and triple co-cultures of Caco-2
with HT29-MTX and Raji-B lymphoma cells (to induce
cells with an M-cell like morphology) (Lozano-Ojalvo
et al., 2019). Although these co-culture models might rep-
resent a more physiologically relevant model than Caco-2
alone, they still lack a number of features described in the
previous sections (see Table 1). Herein, we will focus on
the characteristics ofmore complexmodels, either cell-line
derived or based on primary cells, and indicate whether
they could be relevant for the study of the first key aspects
of de novo allergic sensitization.

5.1 Complex cell line-based models

5.1.1 Air–liquid interface models

Air–liquid interface cell culture models are two-
dimensional (2D) culture models on transwells in
which the basolateral side of cells is in contact with the
culture medium, whereas the apical side is only covered
by a thin film of liquid and is exposed to air. Through
the reduction of the apical medium volume, the oxygen
supply is enhanced to a level presumably more adequate
for cultured cells (Nossol et al., 2011). Air–liquid interface
models are commonly used to shape the airways and the
skin, but several studies have suggested that the cultiva-
tion of intestinal epithelial cells at the air–liquid interface
or a semi-wet interface (with a small amount of liquid on
the apical side) might also improve intestinal epithelial
cell physiology of commonly used intestinal epithelial cell
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988 ALLERGEN SENSITIZATIONMODEL CRITERIA

TABLE 1 Overview of the advantages and disadvantages of different cell culture models that can be used to study the MIE1-3 and KE1 of
the allergic sensitization AOP pathway

Abbreviations: DC, dendritic cells; HIO; human-induced pluripotent stem cell (iPSC)-derived intestinal organoids; PBMC, peripheral blood mononuclear cells;
TEER, transepithelial electrical resistance.
aThickness of mucus layer can be improved by using an air–liquid or semi-wet interface.

models (IPECJ2, Caco-2, and HT29-MTX) (Elzinga et al.,
2021; Navabi et al., 2013; Nossol et al., 2011). Most notably,
air–liquid interface or semi-wet interface culture methods
seem to increase cell numbers, improve cell polarization,
and promote mucus accumulation on the apical cell
surface, albeit in vivo different semi-anerobic conditions
occur (Elzinga et al., 2021; Navabi et al., 2013; Nossol et al.,
2011). Air–liquid interface models using primary cells
have also been described in the literature and include the
EpiIntestinal™model (MatTek Corp.), which will be more
elaborately discussed below, and 2D-cultured enteroid
models (Wang et al., 2019). Air–liquid interface models

have not yet been used in the context of food allergy, but
these models might be of interest given the increased
apical mucus layer that could be used to study the role of
the mucus layer in allergen transport and/or to obtain a
more physiological in vitro model.

5.1.2 Co-culture systems of cell lines with
immune cells

Different immune cell types were shown to have an impact
on allergen transport and/or epithelial cell activation,
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including DC, IEL, and ILC. These immune cells can be
co-cultured with intestinal epithelial cells, either by the
direct addition of immune cells to the basolateral com-
partment or by the plating of immune cells onto the
bottom of the transwell membrane on which intestinal
epithelial cells are cultured to study the direct interaction
between epithelial and immune cells (Ding et al., 2021).
Different co-cultures with Caco-2 or HT29, among others,
with monocyte-derived DC, peripheral blood mononu-
clear cells (PBMC), or THP-1 monocytes using these two
techniques have already been published (Kleiveland, 2015)
(see Table 1). Alternatively, the supernatant from cultured
intestinal epithelial cells can be transferred to immune
cell cultures or vice versa (Lozano-Ojalvo et al., 2019).
In the context of food allergy, some of these co-culture
models have been employed. Tordesillas et al. used a co-
culture of Caco-2 with PBMC to demonstrate that the
peach allergen Pru p 3 (nsLTP) increased the gene expres-
sion of the cytokines IL-1β, IL-6, IL-10, andTNF-α in PBMC
after passage over the epithelial barrier, compared to cells
not exposed to antigen (Tordesillas et al., 2013). More
recently, Bogdanov et al. (2021) used a Caco-2 co-culture
model with different THP-1-derived immune cells (mature
DC, macrophages), PBMC or PBMC-derived monocytes,
or NK/T/B-cell populations to analyze the changes in
cytokine secretion following incubation with soybean Gly
m 4 on the apical side (Bogdanov et al., 2021). More
advanced co-culture systems, using, for example, a Caco-
2/HT29-MTX immune cell co-culture, have not yet been
described in the context of allergen transport or epithe-
lial activation. The described models are clearly more
sophisticated than Caco-2 culture alone and allow for the
assessment of the impact of new food proteins on epithelial
cell activation beyond the assessment of the transport of
proteins or large peptides. It should be noted, however, that
these models still lack the intestinal epithelial cell diver-
sity that might be important for allergen transport and
epithelial activation. Co-cultures of Caco-2 cultures with
IEL or ILC have only rarely been described and might be
technically challenging (Hu et al., 2018).

5.1.3 Gut-on-a-chip models

Gut-on-a-chips aremicrofluidic devices thatwere designed
to better mimic the dynamic mechanical environment
of the gut, to support longer term cell culture in the
presence of the gutmicrobiome, and to enable in vitro anal-
ysis of intestinal epithelial barrier functions (Kim et al.,
2012). First designs of gut-on-a-chip microfluidic devices
consisted of two chambers separated by a porous semiper-
meablemembrane ontowhich epithelial cells were seeded,
separating apical and basolateral compartments (Donkers

et al., 2021). These first 2D models have rapidly evolved
over the past 10 years into elaborated three-dimensional
(3D) models that contain villi structures, peristalsis, and
oxygen gradients (Xiang et al., 2020).
One of the most important additions of gut-on-chip

models to classical models is the fluid flow, which is indis-
pensable for villi formation, cell differentiation, barrier
integrity, and proper tight junction functioning, as well as
mucus production (Donkers et al., 2021; Kim et al., 2012;
Sontheimer-Phelps et al., 2020). The most recent designs
of gut-on-a-chip also incorporate additional cell types
beyond Caco-2 cells, such as human intestinal microvas-
cular endothelial cells, human PBMC, monocyte-derived
macrophages, and the microbiota, to create an organ-level
model (Beaurivage et al., 2020; Donkers et al., 2021; Xiang
et al., 2020). Gut-on-a-chip models have been made using
intestinal cell lines such as Caco-2 or HT29, but more
recent studies have also used organoids or biopsies derived
from the duodenum, the jejunum, or the colon to obtain
a more diverse intestinal epithelium (discussed in Sec-
tion 5.2) (Donkers et al., 2021; Kasendra et al., 2018; Xiang
et al., 2020). For example, a gut-on-chipmodel seededwith
Caco-2 and incubated with gut microbiota better resem-
bled the human ileum based on hierarchical clustering
analysis of genome-wide transcriptome profiles, and was
successfully used to study intestinal bowel disease through
the addition of PBMCs (Kim et al., 2016).
Since gut-on-a-chipmodels aremore physiologically rel-

evant than traditionally used 2D transwell systems using
intestinal cell lines, these models could be of interest for
the study of allergen transport or epithelial cell activa-
tion (Xiang et al., 2020). However, it should be noted
that the throughput of gut microfluidic devices remains
limited to few parallel chips and that significant train-
ing is required to operate these systems. Efforts toward
more easy-to-use systems are being made, with the com-
mercially available OrganoReady R© Colon Caco-2 model
from Mimetas and publicly available 3D printable chips
as examples (Shin & Kim, 2022). To our knowledge, gut-
on-chip models have not yet been used to study allergen
transport or allergen-induced epithelial cell activation, but
they have already been employed to study other intestinal
inflammatory diseases (Beaurivage et al., 2020; Kim et al.,
2016).

5.2 Complex primary cell-based models

5.2.1 Ussing chambers

Ussing chambers are physiological in vitro systems that
have been used to measure the transport of ions, nutrients,
and drugs across various epithelial tissues (Clarke, 2009).
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Ussing chambers consist of a fresh intestinal segment from
mice, pigs, or humans that is mounted into an appara-
tus to measure protein transport and epithelial membrane
properties. One advantage for food allergy research is
the possibility of studying the effect of sensitization on
intestinal protein absorption, using intestinal tissue from
sensitized animals (Cubells-Baeza et al., 2015; Westerhout
et al., 2015). Ussing chamber studies of intestinal mucosa
have providedmany of the key observations that improved
our molecular understanding of transepithelial transport
processes. An advantage of this system regards the use of
different parts of the intestine (from the duodenum to the
colon) (Westerhout et al., 2015). Although Ussing cham-
bers have great advantages and are considered the “gold
standard” for the study of the physiological complexities of
the healthy and diseased intestinal mucosa (Clarke, 2009),
it also has several limitations, namely, tissue availability;
tissue viability is rapidly lost (2 h max); the tissue can
be damaged during isolation, which may lead to overes-
timation of protein transport; and interspecies differences
complicate extrapolation of data to humans (see Table 1)
(Cubells-Baeza et al., 2015; Rozehnal et al., 2012; Sjöberg
et al., 2013).

5.2.2 InTESTine

A recently developedmodel called inTESTine circumvents
one of the main shortcomings of human Ussing chamber
experiments, tissue availability, by using intestinal waste
from pigs in a medium-throughput Ussing chamber set-
ting (see Table 1). This system has a good correlation with
paracellular absorption (Westerhout et al., 2014) and drug
absorption (Stevens et al., 2019), when compared to human
Ussing chamber data. A recent study also successfully used
thismodel to study the transport of peanut allergens (Ara h
1, 2, 3, and 6) across the intestinal epithelium (Smits et al.,
2021).

5.2.3 Intestinal organoids

A potential model to study allergen uptake that has gained
substantial interest is the intestinal organoids. The term
‘organoid’ is rather broad and encompasses 3D cultures
grown from stemcells, wherein one can distinguish intesti-
nal tissue-derived organoids (enteroids, which consist
only of epithelial cells and are grown from multipotent
adult stem cells), or human-induced pluripotent stem cell
[iPSC]-derived intestinal organoid [HIO], which consists
of both epithelial and mesenchymal lineages. Organoids
are generally cultured in a basement membrane matrix,
such as Matrigel R© and specific culture media contain-
ing the cytokines Wnt, R-spondin, Noggin, and epithelial

growth factor to form a spherical monolayer with out-
ward extending budding regions. In contrast to most cell
line cultures, intestinal organoids can differentiate into
a variety of epithelial cell types. Enteroid cell cultures
have been described to comprise intestinal stem cells,
Paneth cells, enteroendocrine cells, tuft cells, and M-cells
(Bellono et al., 2017; Howitt et al., 2016; Sato et al., 2009).
HIO cultures, in contrast, maintain a fetal phenotype in
vitro, though they can mature following in vivo transplan-
tation to yield all mature intestinal cell types: enterocytes,
goblet cells, enteroendocrine, and Paneth cells (Finkbeiner
et al., 2015; Watson et al., 2014). Additionally, significant
efforts are undertaken to promote the maturation of HIO
in vitro (Jung et al., 2018). With these different cell types,
organoid cultures acquire several of the crucial features
involved in MIE1-3 and KE1, which are lacking frommore
conventionally used cell lines (see Table 1).
The main challenge regarding the use of organoid cul-

tures for allergen transport studies lies in their 3D nature
and the presence of the luminal compartment at the
interior of the organoid. One possibility is to adminis-
ter antigens to the intestinal lumen of 3D organoids by
microinjection (Noah et al., 2019), but this is a highly
technical method. Another alternative is to alter the con-
formation of the organoid from basolateral-out to apical-
out to allow for exogenous antigen administration (Co
et al., 2019). Currently, themost commonly sought solution
is to create an epithelial cell monolayer by temporar-
ily culturing organoids on a porous membrane insert,
providing access to the luminal/apical and basolateral
compartments. These monolayers would ideally form an
impermeablemonolayer with a TEER that allows for phys-
iological allergen transport. For enteroids, the creation
of these monolayers has been reported for mice (Moon,
VanDussen, et al., 2014), porcine (van der Hee et al., 2018),
and humans (VanDussen et al., 2015). For HIO, 2D mono-
layers from 3D differentiated HIO or direct differentiation
from iPSC have also been reported (Yamada & Kanda,
2019). As described above, to obtain an even more realis-
tic intestinalmodel, duodenal organoids have already been
used in gut-on-chip systems (Kasendra et al., 2018).
It should be noted that the cultivation of enteroids

and HIO is technically complex and requires significant
resources and might not be feasible for most research
groups. The passage from 3D to 2D culture also remains
technically challenging for routine lab implementation
and the extent to which 2D monolayers accurately reca-
pitulate features of the adult intestine and 3D organoid
culture remains to be further established. Perhaps for these
reasons, only few studies have so far employed organoid
models in the context of food allergy. In a recent study, a
monolayer (not grown on a porous transwell membrane
insert) from mouse small intestinal organoids was used to
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show that the kiwi allergen Act d 1 (actinidin) increases
pro-inflammatory cytokine secretion (IL-1β, TNF-α, and
IL-33) and disrupts tight junction integrity (E-cadherin,
claudin-3, and ZO-1) (Nešić et al., 2019). Also, in vivo
matured HIO were used to show the presence of GAP and
SAP in a human model system (Noah et al., 2019).

5.2.4 Primary co-culture systems with
immune cells

As for cell line co-culture systems, the cultivation of pri-
mary intestinal epithelial cells derived from enteroids or
HIO might add information to the relationship between
the intestinal barrier and the immune system. Different
types of immune cell-enteroid co-cultures have already
been described in the literature, using two techniques: the
combination of murine or human enteroids with relevant
immune cells (e.g., DC, ILC2, ILC3, among others) directly
into the Matrigel R© used for 3D cultivation, or the addition
of immune cells to the basolateral side when enteroids are
cultured in 2D on Transwells (see Han et al. [2021] for an
overview). An example of the cross talk between intesti-
nal epithelial cells and immune cells is given by a recent
study that demonstrated the induction of goblet cell differ-
entiation by the ILC2-produced cytokine IL-13 in mouse
intestinal enteroids, whereas epithelial cell-secreted IL-
33 promoted IL-13 production by ILC2 (Waddell et al.,
2019). The impact of the direct interaction between the
immune system and the intestinal epithelium was also
shown using mice enteroids, where the proximity of T-
lymphocytes to the intestinal epithelium resulted in the
efficient expansion of γδIEL (Nozaki et al., 2016).
In a future effort to include also the subsequent key

events (KE2-5) of allergic sensitization into an in vitro
model, these types of models might help to shed light,
for example, on the tripartite interaction between epithe-
lial cells, immune cells, and the microbiota by co-culture
studies of organoids together with immune cells and
microbiota components. A small number of studies have
started to implement these triple co-cultures, by using
2D human enteroids in transwells cultured with PBMC
or PBMC-derived macrophages in the basolateral com-
partment and E. coli in the apical compartment either
submerged or at the air–liquid interface (Noel et al., 2017;
Wang et al., 2019). It should be noted that the model-
ing of bacteria–host communication in vitro is not easy
to implement. Researchers either produce, purify, and test
microbiota-derived molecules obtained using bioreactors
or directly co-culture bacteria with human cells in a sys-
tem with an anoxic–oxic interface (Sardelli et al., 2021).
For example, an oxygen-impermeable shell can be added to
standard transwell chambers to create an anaerobic apical

chamber or to more complex gut-on-chip models to create
a more physiological anoxic–oxic interface (Sardelli et al.,
2021).

5.2.5 3D organotypic small intestinal tissue
models

In contrast to 3D growing organoids, organotypic small
intestinalmodels have an open luminal surface ontowhich
compounds such as allergens can be applied. Organotypic
models aim to mimic the architecture and physiology of
the human intestine and are thus more physiologically
relevant than simple cell models (Markus et al., 2021).
The main organotypic small intestinal model used is the
MatTek EpiIntestinal™ model (EpiIntestinal™, MatTek
Corporation, Ashland, MA), which is available with only
small intestinal epithelial cells (from human donors) or
with intestinal epithelial cells and intestinal fibroblasts
(https://www.mattek.com/products/epiintestinal/). When
seeded onto cell culture inserts, the small intestinal epithe-
lial cells are cultured at an air–liquid interface for up to
14 days to allow for stratification, differentiation, the cre-
ation of apical–basolateral polarity, and the formation of
villi-like structures (Markus et al., 2021). When intesti-
nal epithelial cells and intestinal fibroblasts are seeded,
the inserts are first cultured submerged and then at the
air–liquid interface to create a self-assembled structure
in which an apical epithelium is found on top of the
fibroblasts (Markus et al., 2021). These models are now
commonly used by pharmaceutical companies to test drug
transport, but, probably due to their high costs, they have
not yet been applied to allergen transport studies (see
Table 1).

➢ Cell line-based models have predominantly been used
in the past to study allergen transport, though these
models generally lack one or several of the critical
features important for modeling the MIE1-3 and KE1
steps (see Table 1). Recent technological advances have
provided the possibility to use more complex models,
such as gut-on-chip, organoids, and organotypic mod-
els, which could be used in the future to obtain a more
physiologically relevant in vitro system to study allergic
sensitization.

6 OPINION

To be able to predict the sensitization capacity of novel pro-
tein products, there is a need for consensusmodels that are
able to create insights into the fate of protein digesta along
the GIT (Mullins et al., 2022). As members of INFOGEST,
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F IGURE 4 Need- and nice-to-haves in an in vitro intestinal epithelial cell model to study MIE1-3 and KE1 of the AOP of allergic
sensitization. The need-to-haves are depicted in color, while features that are nice-to-haves are depicted in gray. Nice-to-haves notably include
members of the innate immune cell complex, submucosal cell types, epithelial cell types, or the microbiota that are currently difficult to
establish by using cell lines. ILC, innate lymphoid cells; DC, dendritic cells; IEL, intraepithelial lymphocytes; AOP, advanced outcome
pathway; MIE, major initiating event; KE, key event

we have attempted to highlight several critical features that
should be considered for implementation in an in vitro
model for allergic sensitization that focalizes on the MIE1-
3 and KE1 steps of the AOP (see Table 2 and Figure 4 for
an overview). Such a model would be a first step toward
a complete AOP screening model that must also contain
KE2-5, in order to be able to make a total risk assess-
ment of whether exposure with a novel protein may lead
to tolerance or sensitization.
To come to a generally accepted and implementable

consensus model for KE1/MIE1-3, several aspects have
to be considered. A relevant in vitro model to study the
translocation capacity of proteins or peptides as part of the

AOP events MIE1-3/KE1 not only needs to represent the
cellular complexity of the human small intestinal lining,
but also to fulfill specific physiological features related to
protein/peptide uptake (i.e., intestinal epithelial alarmin
secretion, M-cell, goblet cell-mediated antigen transloca-
tion, etc.). On top of this, accuracy, reproducibility, and
predictability of the readouts are important aspects to
consider, but, above all, a consensus model should be
readily applicable and reproducible in many labs. It also
should have an accessible apical and basolateral compart-
ment to allow for the addition of protein/allergen digesta
and easy sampling. With these aspects in mind, although
2D-cultured intestinal organoid-based models and
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gut-on-chip models comprise many of the critical features
that should be considered for an in vitro model for allergic
sensitization, such as the cellular intestinal epithelial
complexity (discussed in Section 5), they are also notori-
ously difficult to culture, are relatively expensive, and, for
organoid-based models, have significant donor variability;
however, the latter may actually be useful to enable stud-
ies to understand differences in sensitization affinity for
different age and ethnic groups. Although developments
in this research area are advancing fast, and it is likely that
in the future most labs will have the necessary equipment
at their disposal, at present combining well-defined
human cell lines would be a well-considered choice.
To capture the complexity of the intestinal mucosa, the
development of a co-culture model representing the most
relevant mucosal cell types is crucial since their interac-
tions define, not only protein transport in general, but also
maintain intestinal homeostasis. A disbalance due to, for
example, inflammation or components in the food matrix
can break this homeostasis, but thiswill go unnoticed if the
relevant interacting cell types are not present in themodel.
Considering missing knowledge and building on exist-

ing cellular models, we have pinpointed the so-called
need-to-haves and nice-to-haves for an in vitro model to
study allergic sensitization to allow for a gradual increase
in complexity (Table 2 and Figure 4). The intestinal cell
types that mediate antigen transport (i.e., enterocytes, M-
cells, and goblet cells) and the intrinsic factors that exert
impact on this (i.e., epithelial integrity, surface area, and
mucus layer) are, for obvious reasons, need-to-haves for
studying the AOP events MIE1-3. Complexity to cellular
co-cultures can be added by applying fluid flow or air–
liquid interface to increase villi-structuring and mucus
secretion (discussed in Section 5). Another need-to-have
is the capacity for alarmin release (KE1). However, this
feature has been poorly studied in intestinal epithelial
models, as compared to skin and lung models (discussed
in Section 4), and we cannot yet state with certainty which
intestinal cells should be included to physiologically reflect
intestinal alarmin release. Further knowledge is needed
concerning the full set of alarmin molecules that can be
released by the epithelial lining upon allergen exposure
and whether this release is variable and depends on the
type of allergen and the barrier transport route followed.
Currently, INFOGESTmembers are validating enterocyte-
based cell lines to establish a consensusmodel of intestinal
protein–peptide absorption, as well as a consensus proto-
col for their exposure with food digesta (Miralles et al.,
work in progress). Once established and thoroughly val-
idated, such a model could form a basis to exploit and
extend desired complexity that can be used for allergen
translocation studies as part of the allergic sensitization
risk assessment.

Colonization by diverse microbiota is a key issue in the
development of a functional immune system, and a wide
number of current reviews highlight the importance of
the correct establishment of the intestine microbiota and
its impact on food allergy (Lee et al., 2020; Nance et al.,
2020; Rachid & Chatila, 2016). Being able to include such
a microbiota–host cross talk in our proposed model would
certainly add an extra dimension, though it holds certain
difficulties. A tricky question to consider in the consensus
design is the fact that protein absorption predominately
takes place in the upper small intestine, while currently
established models represent the microbiota from the
colon that differs in composition and diversity. Efforts need
to be made to mimic the microbial ecosystem of the upper
part of the GIT and thus, there is a need to develop a syn-
thetic microbiome (to meet the requirements reproducible
and comparable) composed of microbiota representative
of the small intestine. Ideally, it would be commercially
available, or through a research group, which monitors
composition and stable outgrowth in each batch. Since
such a synthetic small intestinalmicrobiota blend is not yet
available, we consider addingmicrobiota as a nice-to-have.
Since allergen sensitization mostly occurs in infancy

(Dharma et al., 2018), we considered whether the intesti-
nal epithelial model should be representative of an infant,
toddler, or adult. After birth, the GIT of the newborn is col-
onized by differentmicrobial communities that increase in
number and diversity until reaching a more stable compo-
sition at approximately 2–3 years old (Yatsunenko et al.,
2012). The establishment of this early microbiota provides
a massive antigenic stimulus necessary for the adequate
maturation of the gut and associated immune system.
Infants have also an immature digestive system, low activ-
ity of some digestive enzymes, higher gastric pH, and an
immature epitheliumwith high permeability. Although an
intestinal barrier model that mimics infant permeability
characteristics has been recently developed to study nutri-
ent absorption (Kondrashina et al., 2021), capturing the
complexity of an infant’s immature intestinal epithelium
for studying the AOP is currently considered difficult to
perform in vitro. Thus, we consider that an adult epithelial
consensus model is only feasible at this moment.
Lastly, we would like to highlight that the allergic sensi-

tization assessment of novel protein isolates/concentrates
should be evaluated, not only on its own, but also in
the form and in the food product matrix in which it
will be consumed. In this way, immunogenic adjuvants
possibly present in the matrix are considered, as well as
industrial processing aspects that may influence the rate
of epithelial transport and thus sensitization capacity of
the novel proteins. Thus, a consensus model should also
include sample preparation steps, including an in vitro
digestion protocol, and how digesta should be applied.
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Recommendations on how to best detoxify in vitro digesta
samples for application in cellular intestinal absorption
models are currently being drafted within INFOGEST
(Kondrashina et al., to be submitted). Assessing a “healthy
model,” as well as an “inflamed or barrier damaged”
model, is another aspect to consider. This comparison
could indicate whether an atopic predisposed individual
would have a larger risk to become sensitized than a
nonatopic individual. In addition, the impact of drug use
(antibiotics/antacids) or pathogenic colonization on aller-
gen digestion and absorption is an additional assessment
option. To study the full impact of matrix components,
the addition of certain submucosal cell populations is
important, so as not to miss feedback mechanisms toward
the epithelium. Thus, co-cultures including γδIEL and
CX3CR1+-intraepithelial DC are considered nice-to-haves.

7 CONCLUSION

In this paper, we have evaluated the importance of certain
parameters in allergen transport and provided a criti-
cal opinion on which cellular and physiological features
should be included in an intestinal epithelial consensus
model to create insights into the cellular and molecular
mechanisms underlying the first critical steps in allergic
sensitization: if a dietary protein or its derived peptides
are unable to cross the intestinal epithelial barrier, interac-
tions with the innate immune system are highly unlikely
to occur, making additional screening using assays for
AOP events KE2–5 largely unnecessary. The next step is
the actual development of such a consensus model, with
written protocols and clearly defined application guide-
lines, after which the model must be thoroughly validated
by means of a ring trial using a panel of defined aller-
gens and low/nonallergenic proteins. Currently, there are
limited data available to clearly discriminate between aller-
genic and nonallergenic proteins, and this should be an
important area of focus in the future. In addition, any
guidelines should also include a downscaled INFOGEST
digestion simulation protocol to deal with the availabil-
ity of small quantities of pure allergens versus whole food
product material. When this consensus for the first key
event in the AOP is in place, complexity must be added
by including guidelines for subsequent key events (KE2–5;
see also Figure 1) using DC, macrophages, ILC, and T- and
B-lymphocytes in the model, so that it is possible to carry
out a full risk assessment of sensitization and to get an
answer to the questions “which factor of a (novel) protein
tilts the balance towards development of tolerance or aller-
gic sensitization?”; “why are certain allergens more potent
sensitizers than others?”; and “which protein properties
determine the type and severity of clinical symptoms?.” It

is important to realize that with the development of the
expected consensusmodel, only the firstAOP steps in aller-
gen sensitization (MIE1-3 and KE1) can be studied, and
therefore no statements about sensitization risks can be
made. We are still a long way from developing guidelines
and filling knowledge gaps to ultimately apply a complex
AOP consensusmodel for the risk assessments required by
EFSA.

Nomenclature
2D two-dimensional
3D three-dimensional

AOP Adverse Outcome Pathway
APC antigen-presenting cells

APRIL A proliferation-inducing ligand
CCL C-C motif chemokine ligand
CCR C-C motif chemokine receptor

CX3CL1 C-X3-C motif chemokine ligand 1
cDC conventional dendritic cells
DC dendritic cells

EFSA European Food Safety Authority
ELISA enzyme-linked immunosorbent assay
IEL intraepithelial lymphocyte

IFN-γ interferon gamma
Ig immunoglobulin
IL interleukin

ILC innate lymphoid cell
iPSC induced pluripotent stem cell
GAP goblet cell antigen passages
GALT gut-associated lymphoid tissue
GIT gastrointestinal tract

GM-CSF granulocyte-macrophage colony-stimulating
factor

HIO human-induced pluripotent stem cell (iPSC)-
derived intestinal organoid

KE key events
M-cell microfold cell
MHC major histocompatibility complex
MIE molecular initiation event
MLN mesenteric lymph node
NK natural killer cells

nsLTP nonspecific lipid transfer protein
PBMC peripheral blood mononuclear cells
PBS phosphate-buffered saline
SAP secretory antigen passage

TEER transepithelial electrical resistance
TSLP thymic stromal lymphopoietin
TNF-α tumor necrosis factor alpha

ZO zonula occludens
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